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Abstract
The lattice constants, thermal expansion coefficients, specific heats at constant
volume and those at constant pressure, Cv and Cp, second cumulants, and
Lindemann ratio are derived analytically for diamond cubic semiconductors,
using the statistical moment method. The calculated thermodynamic quantities
of the Si crystal are in good agreement with the experimental results. We
also find the characteristic negative thermal expansion in the Si crystal at low
temperatures.

1. Introduction

Semiconductor heterostructures and nanodevices are now of great importance in the modern
semiconductor technologies [1–5]. However, some problems arise in conjunction with the
thermal residual stresses and strain effects in the semiconductor nanodevices which are caused
by the differences in the lattice constants and thermal expansion coefficients among the
constituent elements. The strain effects are an important factor in determining, e.g., the band-
edge potential profile for epitaxially grown quantum dots (Stranski–Krastanow mode) [6, 7].
The interface disorder, intermixing and phase separation, i.e., thermodynamic instabilities
occurring in the semiconductor nano-systems, are also serious problems [4–7]. The present
paper provides the explicit formulation of the thermodynamic quantities of the elemental
semiconductors with the use of the statistical moment method [8–10], taking into account the
anharmonicity effects of thermal lattice vibrations. The thermal expansion coefficients, elastic
moduli, specific heats at constant volume and those at constant pressure, Cv and Cp, are derived
analytically for diamond cubic semiconductors.

In addition to the standard thermodynamic quantities, we also discuss the Lindemann’s
criterion and Lindemann’s ratio [11, 12], which have been widely used for predicting
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the melting temperature of solids. For this purpose, we derive the mean square relative
displacements σ 2

j of the thermal atomic vibrations, which are also the important ingredients
in the theory of XAFS (x-ray-absorption fine structure) [13]. The mean square relative
displacements σ 2

j , also called second cumulants, are related to an attenuation of x-ray coherent
scattering, caused by displacement of the atoms from their equilibrium positions (fluctuations
in the interatomic distances). The XAFS technique is generally superior to the x-ray diffraction
technique, because it provides us local atomic configurations, the species of atoms and their
locations in crystals [13]. The numerical calculation results and the related discussions of the
present study are given for the Si crystal.

2. Statistical moment method

For simplicity and clarity, we present the statistical moment method (SMM) formulation for the
elemental semiconductors by assuming the interatomic potentials ϕi j between the constituent
atoms. However, it is straightforward to extend our formulation to include the angle dependent
many-body electronic potentials and also the first principles density functional theory, as will
be done for some of the numerical calculations for Si crystals. (For the combined use of SMM
formalism with the ab initio energetics beyond the pairwise potentials, we refer to our previous
studies [9, 10].) Then, we start with the potential energy of the system given by

U = N

2

∑

i

ϕi0(|�ri + �ui |), (1)

where ri is the equilibrium position of the i th atom, ui its displacement, and ϕi0 the effective
interatomic potential between zeroth and i th atoms.

The atomic force acting on a central zeroth atom can be evaluated by taking derivatives of
the interatomic potentials. We expand the potential energy ϕi0(|ri + ui |) in terms of the atomic
displacement ui up to the fourth-order terms. When the zeroth central atom in the lattice is
affected by a supplementary force [8–10] due to the thermal lattice vibration effects, aβ , the
total force acting on it must be zero, and one can get the force balance relation as

1

2

∑

i,α

(
∂2ϕi0

∂uiα∂uiβ

)

eq

〈uiα〉a +
1

4

∑

i,α,γ

(
∂3ϕi0

∂uiα∂uiβ∂uiγ

)

eq

〈uiαuiγ 〉a

+
1

12

∑

i,α,γ,η

(
∂4ϕi0

∂uiα∂uiβ∂uiγ ∂uiη

)

eq

〈uiαuiγ uiη〉a − aβ = 0, (2)

where α, γ and η denote the Cartesian components of the lattice coordinates. The introduction
of the supplementary force aβ due to thermal vibration effects is the essence of our SMM
scheme. Using the statistical moment recurrence formula [8–10] one can get power moments
of the atomic displacements and then derive the thermodynamic quantities of the crystal, taking
into account the anharmonicity effects of the thermal lattice vibrations. The thermal averages
of the atomic displacements 〈uiαuiγ 〉a and 〈uiαuiγ uiη〉a , second and third order moments, can
be expressed in terms of the first order moment 〈uiα〉a as

〈uiαuiγ 〉a = 〈uiα〉a〈uiγ 〉a + θ
∂〈uiα〉a

∂aγ

+
h̄δαγ

2mω
coth

(
h̄ω

2θ

)
− θδαγ

mω2
, (3)

and

〈uiαuiγ uiη〉a = 〈uiα〉a〈uiγ 〉a〈uiη〉a + θ Pαγη〈uiα〉a
∂〈uiγ 〉a

∂aη

+ θ2 ∂2〈uiα〉a

∂aγ ∂aη

+
h̄〈uiη〉a

2mω
δαγ coth

(
h̄ω

2θ

)
− θ

〈uiη〉aδαγ

mω2
, (4)
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where θ = kBT (kB being the Boltzmann constant), and Pαγη takes unity for α = γ = η,
and otherwise zero. Here, it is noted that correlations, i.e., deviations from the simple mean-
field approximation in the second and third order moments, are treated exactly in the above
equations (3) and (4), respectively [14]. This is one of the advantages of the present SMM
scheme.

The above equation (2) is now transformed into the differential equation of the first order
moment 〈ui 〉a as

γ θ2 d2y

da2
+ 3γ θy

dy

da
+ ky + γ

θ

k
(x coth x − 1)y + βθ

dy

da
+ βy2 − a = 0, (5)

where y ≡ 〈ui 〉a and x = h̄ω/2θ . In the above equation (5), k, γ and β are defined by

k = 1

2

∑

i

(
∂2ϕi0

∂u2
i x

)

eq

= mω2, (6)

γ = 1

12

∑

i

[(
∂4ϕi0

∂u4
i x

)

eq

+ 6

(
∂4ϕi0

∂u2
i x∂u2

iy

)

eq

]
, (7)

and

β = 1

2

∑

i

(
∂3ϕi0

∂uix∂uiy∂uiz

)

eq
, (8)

respectively. In deriving equation (5) we have imposed the symmetry criterion for the thermal
averages in the diamond cubic lattice as

〈uiα〉a = 〈uiγ 〉a = 〈uiη〉a ≡ 〈ui 〉a . (9)

Let us introduce the new variable y in the above equation (5)

y = y ′ − β

3γ
. (10)

Then, we have the new differential equation instead of equation (5)

γ θ2 d2 y ′

da∗2
+ 3γ θy ′ dy ′

da∗ + γ y ′3 + K y ′ +
γ θ

k
(x coth x − 1)y ′ − a∗ = 0, (11)

where

K = k − β2

3γ
, (12)

a∗ = a − K ∗, (13)

and

K ∗ = βk

γ

[
2β2

27γ k
− 1

3
− γ θ

3k2
(x coth x − 1)

]
. (14)

The nonlinear differential equation of equation (11) can be solved in the following manner:
We expand the solution y ′ in terms of the ‘force’ a∗ up to the second order as

y ′ = y ′
0 + A1a∗ + A2a∗2, (15)

where A1 and A2 are the constants [8–10, 14]. Firstly, we get the solution of equation (11) in
the low temperature limit (T → 0 K) by solving the equation

γ y ′3 + K y ′ +
h̄ωγ

2k
y ′ − a∗ = 0. (16)

Here, the relation γ y ′3 � (K + h̄ωγ

2k )y ′ is used and the solution is simply given by

y ′
0 = B1θ(x coth x − 1) + B2, (17)
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with

B1 = β

3k[k − β2

3γ
+ h̄ωγ

2k ]
, (18a)

and

B2 = k

γ

[
1

3
− 2β2

27γ k

]
B1. (18b)

On the other hand, for higher temperatures, the relation xcothx ∼ 1 holds and equation (11)
is reduced to

γ θ2 d2 y ′

da∗2
+ 3γ θy ′ dy ′

da∗ + γ y ′3 + K y ′ − a∗ = 0. (19)

The above equation (19) is solved as

y ′
0 =

√
2γ θ2

3K 3
A, (20)

with

A = γ 2θ2

K 4
+

γ 3θ3

K 6
+

γ 4θ4

K 8
. (21)

Here, y ′
0 represents the atomic displacement for the case when the force a∗ is zero. The general

solution of equation (11) is solved as

y0 = y|a=0 = y ′|a∗=−K ∗ − β

3γ

= y ′
0 − β

3γ
+

1

K

(
1 +

6γ 2θ2

K 4

)[
1

3
+

γ θ

3k2
(x coth x − 1) − 2β2

27γ k

]
. (22)

Then, we find the nearest-neighbour distance at temperature T as

r1(T ) = r1(0) + y0, (23)

where r1(0) denotes the nearest-neighbour distance at the temperature 0 K. Using equation (23),
the linear thermal expansion coefficient α(T ) is given by the following formula:

α(T ) = kB

r1(0)

dy0

dθ
. (24)

The Helmholtz free energy of our system can be derived from the Hamiltonian H of the
following form:

H = H0 − λV , (25)

where H0 denotes the Hamiltonian of the harmonic approximation, λ the parameter and V
the anharmonic vibrational contributions. Following exactly the general formula in the SMM
formulation [8–10], one can get the free energy � of the system as

�(λ) = �0 −
∫ λ

0
〈V 〉λdλ, (26)

where �0 is the free energy corresponding to the Hamiltonian H0, and 〈V 〉λ the thermal average
over the equilibrium ensemble with the Hamiltonian H . After a bit of algebra, one can find
the Helmholtz free energy � of the diamond cubic semiconductors in the following form:
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� = N

2
U0 + Nθ

∑

q, j

ln

(
2 sinh

h̄ω j (q)

2θ

)
+

3Nθ2

k2

{
γ2x2 coth2 x − 2γ1

3

(
1 +

x coth x

2

)}

+
3Nθ2

k2

{
4

3
γ 2x coth x

(
1 +

x coth x

2

)
− 2(γ 2

1 + 2γ1γ2)

(
1 +

x coth x

2

)

× (1 + x coth x)

}
+ 3Nθ

[
β2k

6Kγ
− β2

6Kγ

]
+ 3Nθ2

[
β

K

(
2γ

3K 3
a1

)1/2

− β2a1

9K 3

+
β2ka1

9K 4
+

β2

6K 2k
(x coth x − 1)

]
, (27)

where U0 represents the sum of effective pair interaction energies and the second term gives
the harmonic part of the free energy. Here, the lattice dynamical theory [15] is used for the
harmonic part of the free energy �0, second term of equation (27). The remaining terms in the
above equation (27) represent the anharmonicity contributions of thermal lattice vibrations.
γ1 and γ2 are the fourth order vibrational constants and are defined by

γ1 = 1

48

∑

i

(
∂4ϕi0

∂u4
iα

)

eq

, and γ2 = 6

48

∑

i

(
∂4ϕi0

∂u2
iα∂u2

iβ

)

eq

, (28)

respectively. Here, it is noted that for the combined use of SMM formalism with the ab initio
energetics the harmonic k and anharmonic β, γ1 and γ2 parameters are replaced by those
expressions including the total energy E0 per atom [9, 10], e.g.,

k = ∂2 E0

∂u2
i x eq

, and β =
∑

i

[
∂3 E0

∂uix∂uiy∂uiz

]

eq

.

The compressibility of the diamond cubic lattice can be derived from the Helmholtz free
energy � , and the isothermal compressibility χT is given by

χT = 3
( r1(T )

r1(0)

)3

2P + r2
1 (T )

3V

(
∂2�

∂r2
1

)
T

(29)

where P and V denote the pressure and volume of the crystal, respectively. The isothermal
compressibility χT is also expressed in an analytic form, but it is rather a lengthy expression
and is not reproduced here. Furthermore, from the definition of the linear thermal expansion
coefficient α, one obtains the following formula:

α = kBχT

3

(
∂ P

∂θ

)

V

= −
√

3kBχT

4r2
2 (T )

1

3N

∂2�

∂θ∂r1
. (30)

This is equivalent to the expression of equation (24), but based on the free energy of the system.
On the other hand, the internal energy of the system is given by

E = N

2
U0 + Nθ

∑

q, j

h̄ω j (q)

2θ
coth

(
h̄ω j (q)

2θ

)

+
3Nθ2

k2

{
γ2x2 coth2 x +

γ1

3

(
2 +

x2

sinh2 x

)
− 2γ2

x3 coth x

sinh2 x

}

− 3Nθ2

{
β

K

(
2γ

3K 3
a1

)1/2

− β2a1

9K 3
+

β2ka1

9K 4
+

β2

6K 2k
(x coth x − 1)

}

− 3Nθ2

{(−x coth x

2
+

x2

2 sinh2 x

)[
β

2K

(
2γ

3K 3

)1/2

(a1)
−1/2 − β2

9K 3

+
β2k

9K 4
+

β2

6K 2k

]}
. (31)
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Then, the specific heat at constant volume Cv is obtained from the derivative of internal energy
E with respect to the temperature T and is given by

Cv = NkB

∑

q, j

h̄ω j (q)

2θ
sinh−2 h̄ω j (q)

2θ

+ 3NkB

{
2θ

K 2

[(
2γ2 +

γ1

3

)
x3 coth x

sinh2 x
+

γ1

3

(
1 +

x2

sinh2 x

)

− γ2

(
x4

sinh4 x
+ 2

x4 coth2 x

sinh2 x

)]}
+ 3NkBθ2

[
β

2K

(
2γ

3K 3

)1/2

(a1)
−1/2 − β2

9K 3

+
β2k

9K 4
+

β2

3K 2k

](
x coth x − x3 coth x

sinh2 x

)
+ 3NkBθ2

[
β

4K

(
2γ

3K 3

)1/2

(a1)
−3/2

]

×
(

x coth x

2
− x2

2 sinh2 x

)2

+ 3NkBθ2

[−2β

K

(
2γ

3K 3
a1

)1/2

+
2β2a1

9K 3

− 2β2ka1

9K 4
− β2

3K 2k
(x coth x − 1)

]
. (32)

The specific heat at constant pressure Cp, the adiabatic compressibility χs , and isothermal bulk
modulus BT are determined from the well known thermodynamic relations

Cp = Cv +
9T V α2

χT
, χs = Cv

Cp
χT , and BT = 1

χT
. (33)

One can now apply the above formulae to calculate the thermodynamic quantities of diamond
cubic semiconductors. The temperature dependence of the elastic moduli, specific heats and
the linear thermal expansion coefficients are calculated self-consistently using the TB total
energy scheme and ab initio density functional theory.

We now briefly discuss the Lindemann’s criterion for melting transition of solids on
the basis of the present SMM formalism. For this purpose, we firstly derive the root
mean square relative displacements σ 2

j (T ) (second cumulants) in the diamond cubic lattice.
(The second cumulant σ 2

j is also an important factor in XAFS analysis since the thermal
lattice vibrations influence sensitively the XAFS amplitudes through the Debye–Waller factor
e−w ∼ exp(−2σ 2

j k2).) The root mean square relative displacements σ 2
j (T ) at the atomic site

j around the central zeroth site are given by

σ 2
j (T ) = 〈[(�u j − �u0) �R]2〉 = 〈u2

j 〉 + 〈u2
0〉 − 2〈u j u0〉. (34)

Here, u0 and u j are the atomic displacements of zeroth and j th sites from their equilibrium
positions. �R is a unit vector at the zeroth site pointing towards the j th site, and the brackets
denote the thermal average. Using the exact moment formula of equation (3), we find the
second moments 〈u2

j 〉 and 〈u2
0〉. We assume that the correlation appearing in 〈u j u0〉 is limited

to the nearest-neighbour j th sites around the central zeroth site (small correlation length
approximation) and use the decoupling scheme

〈u j u0〉 ∼= 〈u j 〉〈u0〉. (35)

Then, the second cumulant is given by

σ 2
j (T ) = 2θ

k

[
x coth x +

2γ 2θ2

k4

(
1 +

x coth x

2

)
(1 + x coth x)

]
. (36)

Lindemann [12] has suggested that a solid melts when the ratio of the mean-square relative
displacement to the square of the interatomic spacing r1 exceeds a certain critical value. In
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Figure 1. Thermal lattice expansion coefficients α of Si crystal.

terms of the mean square relative displacements σ 2
j and the nearest-neighbour interatomic

distance r1(T ) at temperature T , the Lindemann ratio LR is given by

LR(T ) =
√

3σ 2
j (T )/2

r1(T )
. (37)

3. Results and discussions

The thermodynamic quantities of the Si crystal are calculated using the tight binding (TB)
total energy calculation scheme [16, 17] as well as using the first principles density functional
perturbation theory (DFPT) within the local density approximation (LDA) [18, 19]. For
comparison, we also use the angular dependent empirical potentials [20–23]. For calculating
the harmonic contributions of the thermodynamic quantities, we use the first principles DF
theory, while the anharmonic contributions are evaluated with the use of the conventional TB
theory. The harmonic contributions of the thermodynamic quantities are derived by applying
the lattice dynamical model [15]. The dynamical matrix can be obtained directly from the
ab initio density functional calculations or it can be derived from an expansion of the DFT
total energy Ustatic({Ri}) for any lattice parameter in an analytic form, which we need to know
only up to second order in the atomic displacements [18, 19]. In order to attain a good accuracy,
we choose 505 sampling points in a irreducible 1/48 part of the first Brillouin zone [24]. The
anharmonic vibrational parameters β, γ1, and γ2 can be evaluated efficiently and accurately by
the TB theory for the thermodynamic quantities at higher temperatures, where the ‘Einstein’
approximation becomes sufficiently valid.

In figure 1, we present the linear thermal expansion coefficients of the Si crystal,
calculated by the SMM formalism, together with the experimental results [25, 26]. Overall
good agreements between the calculation and experimental results are obtained for a wide
temperature range. The thermal expansion coefficients of elemental semiconductors like Si are
one order of magnitude smaller than those of the ordinary metals and alloys [9, 10]. The smaller
magnitudes of the thermal expansion coefficients are related to the inherent ‘anharmonicity’
of the thermal lattice vibrations, i.e., the smaller ratio of γ1γ2/k2 of the Si crystal, compared to
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Figure 2. Temperature dependence of bulk modulus of Si crystal, in comparison with the
experimental results.

those of metals and alloys. We have found a characteristic small negative thermal expansion
of Si crystal at low temperatures as clearly seen in the figure. This negative thermal expansion
arises from the peculiar temperature dependence of the bond stretching and bond bending force
constants. The bond bending force constant of Si crystal is found to be an increasing function
of the temperature, while the bond stretching force constant is a decreasing function of the
temperature by the density functional calculations. Around 80 K the linear thermal expansion
coefficient exhibits a minimum with a negative value, which reflects a contraction of the crystal
compared to the zero-kelvin lattice spacing. This contraction reproduces well the expansion
coefficients for lower temperatures as well as for higher temperatures. In our calculations,
the atomic mass of silicon is taken to be m = 28.085 38 and ‘isotopic effects’ [27, 28] of the
thermal expansion as fully discussed in [27] and [28] are not considered here. (The natural
composition of Si crystals is a mixture of different isotopes: 92.232% of 28Si, 4.677% of 29Si
and 3.090% of 30Si.)

In figure 2, we present the temperature dependence of the bulk modulus of the Si crystal
by a solid line, in comparison with the experimental results (circles) [29]. The calculated bulk
modulus of the Si crystal is a decreasing function of the temperature; and the decreasing rate
is smaller than those of the metals and alloys. The smaller decreasing rate arises from the fact
that the thermal expansion coefficients of the elemental semiconductors like Si are one order
of magnitude smaller than those of the metals and alloys. Above 150 K, the decrease of bulk
moduli of Si crystal with increasing temperature is fairly linear, and this tendency is in good
agreement with the experimental results.

The calculated specific heats at constant volume Cv and those at constant pressure Cp are
shown by solid curves in figure 3, in comparison with the experimental results. Below 400 K,
there are no visible differences between Cv and Cp values of the Si crystal. The experimental
specific heats Cp (cal K−1 mol−1) are taken from [30] and [31], and they are given by a simple
analytic function of the temperature. The calculated specific heats Cp at constant pressure
become larger compared to those at the constant volume Cv for the higher temperature region.
The differences between the specific heats Cp and Cv arise from the anharmonicity of thermal
lattice vibrations, as given by equation (33). For comparison, we also present in figure 3
the specific heats Cp (∼=Cv) by a dashed curve calculated by using the harmonic Einstein
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Figure 3. The specific heats Cv and C p of the Si crystal, in units of cal mol−1 K−1.

approximation, i.e., using the formula

C0
v = 3kβx sinh−2 x .

One can see in figure 3 that the harmonic Einstein approximation clearly underestimates the
specific heats Cv and Cp at lower temperatures. This is the natural consequence of the fact that
in the harmonic Einstein approximation only the single Einstein vibrational frequency is taken
into account, and dispersion of vibrational frequencies (especially lower ones) is neglected.
For the low-temperature region, the low-lying vibrational modes contribute significantly to the
specific heats, and the neglect of the low-lying vibrational modes leads to underestimation of
the specific heats.

The calculated bulk moduli BT , second cumulants (mean square relative displacement),
and Lindemann ratios LR are presented in tables 1. The Lindemann ratios are calculated as a
function of temperature, and take values of about 0.069 at the experimental melting temperature
1685 K. This theoretical finding is in good agreement with the previous studies: Cartz [32]
and Gilvarry [33] reformulated the Lindemann criterion utilizing the Debye and Waller theory
of the temperature dependence of the mean-square amplitude of vibration, and showed that
the amplitude attains a value of less than 10% of interatomic distances at melting. However,
it must be noted that the Lindemann ‘constant’ is not strictly constant from one lattice type
to another, and in spite of the partial success the physical relation between lattice instability
and melting has not yet been clarified. In this respect, we point out that the more rigorous
treatment for melting of solids can be developed by taking into account the anharmonicity of
thermal lattice vibrations. A more complete theory based on the lattice instability has been
proposed by Ida [34], taking into account the anharmonicity contribution to the thermal energy.
Furthermore, it is also interesting to note that the crystal anharmonicity plays an important role
even for the liquid–vapour phase transitions [35]. The present SMM anharmonicity theory can
also be extended to treat the melting phase transition of solids and the detailed analysis is one
of our subjects for future publications.

Summarizing the above mentioned calculations by the SMM formalism the analytic
derivations are quite useful for the numerical calculations of the various thermodynamic
quantities. The calculation results by empirical potentials are similar, in orders of magnitude,
to the present calculations, but they are less satisfactory compared to the experimental results.
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Table 1. Calculated thermodynamic quantities and Lindemann ratio of Si crystal.

α(T ) Exp. [26] B Cv C p σ 2
j

T (K) (10−6 K−1) (10−6 K−1) (102 GPa) (cal K−1 mol−1) (cal K−1 mol−1) Exp. [30] (10−2 Å2) LR

10 0.48 × 10−3 1.011 0.000 02 0.000 02 — 0.2919 0.0348
50 −0.3051 −0.282 1.011 0.223 72 0.223 73 — 0.2919 0.0348

100 −0.3582 −0.330 1.011 1.351 86 1.351 89 1.74 0.2935 0.0348
150 0.5859 — 1.011 2.560 75 2.561 37 2.87 0.3034 0.0349
200 1.5120 1.406 1.010 3.504 17 3.505 18 3.74 0.3239 0.0352
250 2.1870 2.105 1.009 4.172 30 4.174 06 4.37 0.3523 0.0357
300 2.6550 2.616 1.008 4.637 12 4.640 10 — 0.3863 0.0365
350 2.9790 — 1.007 4.964 47 4.969 24 — 0.4239 0.0375
400 3.2310 3.253 1.006 5.200 10 5.207 45 5.33 0.4657 0.0387
500 3.5820 3.614 1.003 5.504 89 5.519 71 5.63 0.5513 0.0411
600 3.8430 3.842 1.000 5.685 05 5.711 27 5.83 0.6408 0.0437
700 4.0860 4.016 0.996 5.799 52 5.842 41 5.98 0.7352 0.0462
800 4.3110 4.151 0.992 5.877 38 5.941 32 6.1 0.8281 0.0488
900 4.5540 4.185 0.987 5.931 18 6.025 04 — 0.9250 0.0513

1000 4.8150 4.258 0.982 5.970 23 6.100 54 6.3 1.0181 0.0537
1100 5.1120 4.323 0.976 5.999 44 6.176 45 — 1.1152 0.0560
1200 5.4270 4.384 0.970 6.021 86 6.255 60 6.47 1.2119 0.0583

The empirical potentials are usually fitted to the ground state properties of materials derived
from the first principles electronic structure calculations and/or the corresponding experimental
results and it is difficult to include the temperature dependence of the potential parameters and
electronic entropy effects which give the important contributions at higher temperatures in the
thermodynamic quantities. We have found that anharmonic contributions play an important
role in determining the thermodynamic quantities for a higher temperature region than the
‘Debye temperature’. The characteristic negative thermal expansions are also calculated for
the Si crystal for the low temperature region as in the previous theoretical studies [12–14].
However, the present SMM calculations are in contradiction with the previous quasi-harmonic
ones in the sense that the related thermodynamic quantities such as the specific heats and
elastic constants are calculated simultaneously and self-consistently with the thermal lattice
expansions including the anharmonicity effects contributions.

4. Conclusion

We have presented the SMM formulation for the thermodynamic quantities of diamond cubic
semiconductors taking into account the higher order (fourth order) anharmonic vibrational
terms in the Helmholtz free energy and derived the various thermodynamic quantities in
closed analytic forms. The lattice constants, linear thermal expansion coefficients, specific
heats at constant volume and those at constant pressure, Cv and Cp, second cumulants (mean-
square relative displacements) and Lindemann ratio have been calculated successfully for the
Si crystal. We have demonstrated the applicability of the ‘real space’ and analytic statistical
moment method (SMM) for the thermodynamic calculations of the elemental semiconductors.
Accordingly, we hope that the present SMM scheme will be used extensively for the atomistic
structure and thermodynamic calculations of nanoscale materials as well.
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